RELAXATION OF A LIQUID LAYER UNDER THE ACTION
OF CAPILLARY FORCES

O. V. Voinov

The theory of creeping motion is used to study the relaxation of an infinite viscous fluid lay-
er (membrane) of nonuniform thickness. The propagation of boundary perturbations in a
semi-infinite layer under the action of surface-tension forces is also considered. The layer
has at least one common boundary with a gas. It is found that relaxation processes of an in-
finite layer or the propagation of boundary perturbations inside a bounded layer are non-
monotonic, and that wave-like surface perturbations always arise. Relaxation times are de-
termined. Maximum distances are found over which separate regions of the layer can affect
each other.

1. Fundamental Equations. ‘It is assumed that the thickness h of the viscous fluid layer varies over
distances [ such that I > h, i.e., dh/dx < 1 (x is the coordinate in the direction of the layer). We know [1]
that the equations of hydrodynamic lubrication theory are valid when the reduced Reynolds'number R* <« 1
(R* = vh%/lv; v is the velocity along the layer). For small wave-like perturbations, when the variation of
thickness Ah < h, this condition is insufficient, since the nonsteady-state term in the Navier-Stokes
equation can be large. We must therefore take the more general condition h? « v, where 7 is the char-
acteristic time for variation of the layer thickness.

The equations of motion and conservation of mass have the form [2]

h
op &% 9 an (1.1)
Toeetegn  an\vdy+ g =0,

0

Here y is the coordinate across the layer; y =0, y = h are the coordinates of the surfaces bounding
the layer; g is the mass force.

In the case of a membrane situated on a solid surface, we can assume that a constant shear stress
¥, applied externally, acts on the free surface of the membrane. Consequently u9v/0y = F for y = h.
Clearly v = 0 and y = 0 also. These boundary conditions and the first of Eqs. (1.1) are satisfied by

2vp = (9p ] 0z — pg) (y* — 2yk) + 2Fy.
If the second equation of (1.1) is taken into account we have

wlwml—n o) =% (1.2

It is known f2]' that the boundary condition at the free surface of a fluid can coincide with the bound-
ary condition of a solid body if substances with surface activity are present. In what follows, membranes
with this type of boundary condition are referred to as stabilized membranes. It is not difficult to obtain
an equation similar to (1.2) for a stabilized layer, if we allow for the fact that the layer suffers only sym-
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metric deformations relative to the center, because the pressure is constant over the cross section and
there are surface-tension forces acting. This equation has the form

%[%(%%—pgﬂ:%‘ (1.3)

This equation is treated in [3] for the case in which op/6x =0. If it is assumed that the gas pressure
at the free surface is constant, the following expressions may be written down for the pressure inside the
membrane:

(p — po)y = 00%h ] 02%, (P — po)a = '}, 6O*h ] 82*, (1.4)

Here ¢ is the surface-tension coefficient; the subscript 1 refers to the membrane on the solid sur-
face; the subscript 2 refers to a stabilized membrane having a boundary with a gas only.

If one of the equations(1.4) is inserted in (1.2) or (1.3) and the result linearized, the following equa-

tion is obtained:

oh O _ g 0h
T T s Y (1.5)

For a nonstabilized membrane on a solid surface
bp = 3LhF 4 pgh?, 3pa = ohd,
For a stabilized membrane having a boundary with a gas only
4bp = pght, 24pa = oh®.

If one of the boundaries is a solid body then the coefficient b remains the same, while the coefficient a is
doubled.

9. An Infinite Membrane. The Cauchy problem can be correctly formulated for equation (1.5) if a > 0,
as can be seen from what follows. For a < 0 the formulation is incorrect. Since a > 0 always for a mem-
brane, the problem can be formulated with the initial condition

h=hy(z) for t=0, —o0 <z <} 0. 2.1)

A Laplace transform with respect to time and a Fourier transform with respect to the space coor-
dinate can be used in order to solve Eq. (1.5) with the initial condition (2.1):

k(k, p) =\t \ bz, tyevriniz, (2.2)
0 -—oa
Equation (1.5) then gives
ph (k, p) — ko (k) = — (ak* + bik)h (k, p)

where hy(k) is the Fourier transform of the function hy(x). The Fourier transform of the function h(x,t) can
then be found easily:

cioo
Bk, 1) = o S et (k, p)dp = ho (k) e-akHbiR) E . (2.3)

c—ico

When the inverse Fourier transform is taken and the convolution theorem used, h can be expressed
in terms of hy with the help of the Green's function:

Rz ty=\ ho(—bt)G(z—E 1)dE (2.4)
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G t) = g (emid. (2.5)

—C0

It is clear from (2.4) that the relaxation process in a moving membrane (b = 0) proceeds in the same
way as in a stationary membrane (b = 0).

In order to investigate the properties of the Green's function (2.5) it is convenient to introduce the
parameter

s = 37127 (51 aty (2.6)

The parameter s ~ 1, if x ~ Z(at)l/‘l, If s < 1 (for small distances or large times) then we see from
(2.5) that the Green's function decreases with time like (at) ™2,

If s > 1, then the integral (2.5) should be evaluated by the method of steepest descent. It can be shown
that the saddle points k=272 ei/ﬁ m’ k= 2—2/‘365/%1”- are the highest on the integration path represented by
the straight line Im k=2"5/8y/3, After straightforward calculations we have for s —

G (z, t) = 24V 7 (atsV 3) i exp (—s ] V E)V[cos (s — e m) + O (s1]. (2.7

Consequently the Green's function (2.5) for the problems (1.5, 2.1) is an alternating function. This is
its fundamental qualitative difference from the Green's function for the heat conduction equation, which is
monotonic. We can conclude that the propagation of an initial perturbation through the membrane is always
accompanied by the production of waves. Relaxation due to capillary forces has a nonmonotonic character,
i.e., every initial perturbation of thickness, even the smoothest, subsequently gives rise to thickness os-
cillations of the membrane.

It is clear from (2.4)-(2.7) that the characteristic relaxation time for a membrane with irregularities
of dimension I is 7 = ¥/a. For layers which are thin enough this time can attain days and even months. For
example, it is of the order of days when I ~ 0.1 cm, h ~ 10 cm, ¢ ~ 10° dyn/cm, p ~ 10-? g/cm - sec.

It follows from Eqgs. (2.4)-(2.7) that parts of the membrane situated at distances farther apart than
r =(at)1/4 do not influence each other. If the dimensions of the membrane are much greater than r, then
there is no point in studying the membrane as a whole, and we can restrict ourselves to treating the indi-
vidual parts. For a soap bubble of radius 1 em, for example, the life time t ~ 102 sec, the wall thickness
h~ 107 cm, for p ~ 1072 g/cm- sec, ¢ ~ 10*dyn/cm, r ~ 2-10™2 cm < 1 cm. Consequently when investi-
gating processes taking place in the membrane the entire soap bubble need not be treated, and its surface
curvature can even be neglected.

Clearly if the dimensions of the membrane are much greater than r, then the region close to the
boundary of the membrane can be considered separately, and the membrane treated as semi-infinite,

3. A Semi-infinite Membrane. The solutions of Eq. (1.5) are now considered for b = 0 in the interval
(0,%). In addition to the initial condition

h="hy(x) for t=0,0< 2<C o0 (3.1)

there are two types of boundary conditions. The first set of boundary conditions corresponds to specifying
the mass flux from the membrane and the angle of inclination to the membrane boundary. The second set
of boundary conditions corresponds to specifying the pressure and thickness. Boundary conditions of the
second type are possible but they are not discussed here. Boundary conditions of the first type are

Bh ) 0z® = qa(t), Oh}dr =Pl for z=0 (3.2)

In order to construct a solution of the problem for these boundary conditions we can continue the
initial condition (3.1) symmetrically about the origin for x < 0 and apply the Laplace and Fourier trans-
forms (2.2). If we then take into account that derivatives of h(x,t) with respect to x are discontinuous at the
origin, as specified by (3.2), then the following formula can be obtained for transforming the function h(x,t):

(P + akh (k, p) = Ry (k) + 2a0 (p) — 20k (p)

where hy(k) is the Fourier transform of the function equal to hy(x) for x > 0 and hy(~x) for x < 0. Applica-
tion of the inverse Laplace transform to h(k,p) gives
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Bk, £) = 2a [a () — BB ()] o €T |- By () et

On applying the inverse Fourier transform we have the solution of the problem with the boundary
conditions (3.2) in the following form:

i
h(z, t)=§h @G-8 1)+ CG@+E h)dE -I-ZdS[G(x,t—r)a(r)—]- G (@ t— T)B('_l,’):'d'r, (3.3)

Here G(x,t) is determined by equation (2.5).
Specifying the thickness and pressure at the boundary is equivalent to the following conditions:
h=wu(), #h)oz* =9y () for 2=0. (3.4)

To solve Eq. (1.5) with the boundary conditions (3.1), hy(x) must be continued asymmetrically about
the origin for x < 0 in this case. Carrying out calculations similar to those used to obtain equation (3.3),
we can find a solution of the problem with the boundary conditions (3.4) in the following form:

M )= W@ 6@ 80— G@+ B onds 120\ @t —0 1@+ Fh et —9x@]dr (3.5)
0 0

Here, as in (3.3), G(x,t) is defined by equation (2.5).

It is interesting to determine how perturbations propagate away from the boundary of the membrane
for small times or large distances, i.e., for large values of the parameter s, defined by (2,6). When the
method of steepest descents is applied to 8G/9x we have for s —

0G| 9 = V 2 (3ar) exp (— s / YV 3) [sins + O(s V)] (3.6)
Similar equations ean easily be written down for 82G/ox%, 8%G/0x%. 1t is important that they contain

oscillations, like (3.6). It then follows from (3.3) and (3.5) that perturbations at the boundary cause oscil-
lating perturbations in the membrane at large distances from the boundary.

If @ =const, = const in the boundary conditions (3.2), then it follows from (3.3) that a decrease in
thickness occurs most rapidly at the boundary, in accordance with the following law:

h—hy = — Yg0¢, (at)a/‘ — Bey (at)ll‘
o % 3.7
% = S e?dz = 1.81, _n% = S z22e~t'dz =~ 0.60. @D
—o0 T

If a constant pressure perturbation Ap acts at the boundary with a constant thickness (y = const, ® =
const), then a maximum change in thickness Ah occurs at some point x; > 0. On the basis of (3.5)

Bh (@0, ) = — 7 (@i}, 2o (1) = (at)'. (3.8)
A membrane of dimension ! will become thinner in the boundary region, if xy < for Ah ~ h, i.e.,

Apl? > ho, which follows from (3.8). If the reverse inequality is satisfied, the membrane will become
thinner in the central region.

The assumptions h? < »7 and h > Ah, made in deriving (1.5}, will remain valid for ay? < y and
v/at << h on the basis of (3.8). For a stabilized membrane having a boundary with a gas only, this means
that

W (Ap)<<24pvis, ApVh<<5 Vs o
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